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Supplementary Information for the study “Evidence of climate change impacts on crop 

comparative advantage and land use” 

 
Methods 

Yield-weather model  

Weather variables included in the yield-weather model  

Historical weather data from the Global Historical Climatological Network includes 306 weather 

stations in North Dakota and 397 stations in South Dakota. County-level weather variables, i.e., 

daily minimum/maximum temperature and precipitation, are constructed as averages of the 

values recorded at stations within each county. All counties have at least one weather station. 

We aggregate daily temperatures into threshold-based seasonal heat exposure variables called 

growing degree-days or GDs, and stress degree-days or SDs. Mathematical representations of 

GDs and SDs for county i in month m of year t are (Xu et al. 2013): 
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Here max
, ,i d tT  and min

, ,i d tT  are, respectively, the maximum and minimum temperature (in oC) for 

county i on day d of month m and year t, , ,i m tGD  is heat accumulated within temperatures lT  and 

hT  with h lT T> , while , ,i m tSD  is heat accumulated above kT  with k hT T> . Note that the 

temperature thresholds, i.e., lT , hT  and kT , are identified for each crop separately, discussed 

hereafter. 

Moisture availability for crop growth is incorporated as monthly Z values for the Dakotas’ 18 

climate divisions, each containing multiple counties, downloaded from the National Oceanic and 

Atmospheric Administration (see web-link). Area-weighted Z values for all counties are 



	 	

2 
	

preferred to precipitation as this index accounts for all of evapotranspiration, soil’s water storage 

capacity, and precipitation. Since evapotranspiration is calculated using monthly and annual 

average temperatures, Z may be correlated with GD and/or SD. We transform Z to represent 

extreme dryness (DRYZ) and extreme wetness (WETZ) using pre-defined thresholds as follows: 

, , , ,

, , , ,

a) min( 1.99,0);

b) max( 2.49,0).
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where DRYZi,m,t and WETZi,m,t are defined as a function of , ,i m tZ  such that higher DRYZ (WETZ) 

indicates an higher degree of dryness (wetness). By including weather stressors from eq. (S2) in 

our yield-weather model we are able to test whether extreme dryness (or drought) exerts the 

highest yield reduction among the weather stressors, as previously pointed out by Massetti and 

Mendelsohn (2016). An alternative moisture deficiency index, called the Palmer Drought 

Severity Index, also exists but Z is considered to be more stable in measuring short-term 

moisture deficiency (Karl 1986). 

  

Min-max versus Sinusoidal interpolation of degree-days: Summary and correlation statistics 

While Schlenker and Roberts (2009), D'Agostino and Schlenker (2016) and others have 

implemented sinusoidal interpolations, we implemented a min-max form of interpolation on 

daily minimum and maximum temperatures for calculating the growing degree days and stress 

degree days. The definitions of GD and SD under the min-max formulation was provided in eq. 

(S1) of the SI. 

Although the sinusoidal interpolation is formulaically different from the min-max 

interpolation, both accumulate degrees from intermediate temperatures between the daily 

maximum and minimum temperature levels given the degree-day thresholds. This particular 
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feature allows the interpolated daily temperatures to fare better in realistically calculating the 

degree-days relative to only using average temperatures. For example, consider a scenario where 

the maximum temperature is 30oC and the minimum temperature is 10oC and the SDs are 

accumulated for temperatures above 25oC. Then if a researcher were to rely solely on average 

temperature (i.e., 20oC) the SDs would be zero, however under the sinusoidal interpolation SDs 

equal 1.1 units (see Snyder 1985) and under the min-max interpolations SDs equal 2.5 units.  

Based on the above understanding we compiled a comparative analysis that provides 

evidence that the outputs of min-max and sinusoidal interpolations are highly correlated. In fact, 

the variable GD seems very close across these formulations even in the absolute sense. We 

present the variable summaries and correlation statistics in Tables S1-S2 and the scatter plots for 

all four crops in Figure S1.  

 

Identifying the yield-temperature relationship for the Dakotas’ major crops: Step-functions 

approach 

Following a previous study we regress crop yields on each 1-degree Celsius bin having 

controlled for quadratic trends and precipitation (Schlenker and Roberts 2009). The estimated 

step-functions, which provide an initial guide to the temperature thresholds that define each 

crop’s GDs and SDs, are presented in Figures S2-S5. The crop-specific thresholds are given as: 

[7 ,26 ],  30o o oGD C C SD C∈ ≥ 	for maize; [6 ,26 ],o oGD C C∈  32oSD C≥  for soy; [6 ,oGD C∈

20 ],oC  27oSD C≥  for spring wheat; and GD∈ [6 ,22 ],o oC C  27oSD C≥  for alfalfa. 
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Land Capability Classes and Subclasses: Definitions and the Natural Resources Inventory’s 

(NRI) nomenclature 

County-level soil quality variables are constructed from the NRI-based Land Capability 

subclasses that categorize soil deficiencies, i.e., ‘dry/shallow’ soils, ‘poor drainage/wet’ soils, 

‘erosive’ soils, and soils with ‘climatic limitations.’ These subclasses are appended to the 

commonly-used Land Capability Classes. The land capability classification assigns progressively 

less suitable soils into higher classes. Soils of higher land capability categories require more 

intense management practices to mitigate intrinsic limitations on agricultural production. 

Typically, class I soils can be readily cropped; class II, III & IV lands require some additional 

remedies before they can be cropped; and categories V-VIII are usually inappropriate for 

cropping. The types and extent of remedies required for class II, III & IV lands depend on the 

type of impediment(s). Land capability classes II-VIII are further sub-categorized by the soil’s 

dominant impediments. We constrain our analysis to categories II-IV, covering 85-90% of the 

Dakotas’ county-level crop acreage. 

A hierarchical nomenclature is followed for assigning subclasses when multiple impediments 

are present (Kligebiel and Montgomery 1961, pp. 2). Erosion [E] takes precedence over every 

other kind. Next in this ordering are excess wetness [W] and dry/shallow soils [S]. Soils are 

assigned a climatic limitation category [C] only if temperature and/or moisture-deficiencies are 

the only impediments to cropping. This means that [W] might imply shallowness as well as poor 

drainage limitations but poor drainage is the dominant limitation. Similarly, [E] could imply 

shallowness and/or poor drainage along with erosion as impediments, where erosion is the 

dominant limitation. The data do not differentiate between soils with single and multiple 

impediments. 
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We utilize the [S] and [W] sub-categories in our yield models, where [S] is not grouped with 

any other soil category. In our yield models, we include soil-weather interactions. In particular, 

we use the percent of land in a county under [S], denoted by dry
iQ , and interact it with SD, GD, 

DRYZ and WETZ. These interactions are expected to reveal whether specific soil limitations 

mitigate or aggravate heat/moisture impacts on yields. We hypothesize that the yield impacts of 

SD will be aggravated due to shallow soils while that of WETZ might be mitigated (relative to 

[W]). Further, the impacts of extreme wetness could be worse on soils classified as [W]. The 

resulting coefficient estimates for dry
iQ  and wet

iQ  will capture whether dry and wet soils 

mitigate/aggravate the impact of each weather stressor on yields relative to such impacts due to 

excluded soil types, i.e., erosive soils and soils with climatic limitations. 

 

SD categorization: Why normalize differentiated stress-degree-day categories? 

To differentiate yield impacts by the intensity of heat stress, we disaggregate stress degree-days 

into isolated or single-day events (SD1), continuous events of two-three consecutive-days (SD23) 

and four-or-more consecutive days (SD4+) such that SD = SD1 + SD23 + SD4+. 

SD1 is constructed by multiplying the column of total SDs by an indicator variable that equals 

1 on an isolated hot day and 0 otherwise. SD23 and SD4+ are constructed in similar fashion. 

Notice that heat may not accumulate proportionately within each SD category. In addition, SD1 

may be a more frequent event than SD23, which in turn may be more frequent than SD4+. To 

compare coefficients across SD categories, we normalize such that SD23 (or SD4+) represents a 

bundle of 2-or-3 (or 4-or-more) SD1s in a consecutive sequence rather than in isolation. Below 

we describe our normalization factors, and also the underlying concept that ensures 

comparability of coefficients across disaggregated SD categories. 
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Consider representative county i in year t. Our modelling approach asserts that the yields in 

county i would increase from an additional GD and decline from an additional SD. Our objective 

is to evaluate the impact of an additional SD when it occurs as a single-day event versus when it 

occurs for 2-or-more consecutive days. In other words, we test whether an additional unit of SD 

in one category is more or less harmful than in another category by their occurrence as single-

day or multi-day events. 

We consider the occurrence of SDs (given each crop’s temperature threshold for stress 

degree days) as single-day or consecutive 2-day events during each growing season. Let 1I  and 

2I  be the respective total frequency of single-day and 2-day heat events, and so the total number 

of days when SD > 0 equals 1 2 2I I+ . Further, if 1 2and m m  represent the average per day heat 

accumulated under the single-day and consecutive 2-day categories respectively, then 
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Recall that eq. (S1) is a snapshot of representative county i in year t. The quantum of heat 

within SD1 and SD2 categories may differ across three dimensions: 1) average per day heat (

1 2vs.m m ); 2) frequency of the event ( 1 2vs.I I ); and 3) because two single-day events are 

essentially bundled up into one consecutive 2-day event. Now, assuming 2 1 2 1 and m Im k m I k I= =

for some positive constants mk  and Ik , eq. (S3) can be re-written as: 
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Eq. (S4) represents a structural breakdown of SDs because it compares the impact of an 

additional unit of SD1 on yields in isolation and in two consecutive repetitions. Since SD1 is the 

common denominator of marginal response to drought stress, the coefficients 1β  and 22 m Ik k β  

are directly comparable. Alternatively, one may divide SD2 by a normalization factor 2 m Ik k  prior 

to estimating eq. (S3) in order for regression coefficients to be directly comparable. It is 

important to realize that the factor 2 m Ik k  captures disproportionate heat intensity across SD 

categories. 

Although we only consider one county in a given year in the above illustration, the 

normalization factors (2 m Ik k ) could vary across counties and on a year-by-year basis. For the 

Dakotas we find that consecutive heat events were less frequent than the isolated events during 

1950-2017 but heat stress, i.e., m, can be higher for isolated events with high temperature-levels 

than moderately hot consecutive events. Therefore, a normalization factor for each category 

(e.g., 2 for SD2, 3 for SD3) may not be appropriate. So we designate the spatio-temporal mean of 

each category, i.e., SD1, SD23 and SD4+, during 1950-2017 as its respective normalization factor. 

Although a county-wise and year-wise normalization factor would be the most accurate, we 

utilize static means to simplify the interpretation of the resulting variables, and thus posit the 

overall means to be a plausible candidate for the proposed normalization. 

 

Estimating seasonally differentiated yield-weather relationship 

The seasonality of yield-weather responses provide some useful insights (Tables S19-S20 

presented below under the ‘Results’ section in SI). Early-season SDs are beneficial for spring 

wheat and soybean yields, mainly because most of the isolated SDs occur during mid-April to 

mid-June in a typical year. In the case of spring wheat late-season GDs are detrimental while 
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early-season SDs are beneficial. This suggests that the yield-temperature relationship for this 

crop might differ across different stages of the growing season, requiring time varying thresholds 

rather than uniform thresholds, i.e., [6 ,20 ]o oGD C C∈ , throughout the season. Further, we find 

that for spring wheat and alfalfa yields increase with higher values of WETZ×SD in the early 

growing-season (April-May), as was also found earlier using spring wheat field-trial data (Tack 

et al. 2015), and extended now also to alfalfa. For maize and soybeans the impact of higher 

WETZ×SD is insignificant early in their growing-season (May-June) but is positive and 

significant during July-August, implying that high moisture levels mitigate the impact of heat-

stress. Droughty conditions (DRYZ) are found to be relatively more detrimental to yields late in 

the growing-season for all crops. 

 

Land use change estimation 

A recent study that modelled land use change in the eastern Dakotas: Brief detail and limitations 

Rashford et al. (2016) recently estimated the link between land use and weather using parcel-

level Natural Resources Inventory (NRI) data during 1982-1997 for eastern Dakotas. Weather 

variables were acquired from eight sparsely located weather stations, under-representing the 

region’s climatic variability. While including weather’s time-invariant first and second moments, 

weather extremes were otherwise ignored where these are known to significantly harm yields 

(Schlenker and Roberts 2009; Massetti and Mendelsohn 2016). Moreover, a reduced-form land 

use model as a function of weather is unlikely to capture change in crop profits, which should 

drive rational land allocation decisions. 
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Marginal effects of crop returns on the Dakota’s historical land use changes: Multinomial 

logistic regression 

We model the Dakotas’ land allocation shares to each use u in county i and year t, ,
u
i ts , where 

, [0,1)u
i ts ∈ ,i t∀  for { , , , }u U m s w a∈ =  and , (0,1)g

i ts ∈ ,i t∀ . We specify u’s shares with grass as 

the reference category. Defining u u gβ β β−! , , , ,
u u g
i t i t i tε ε ε−! , in eq. (2) we obtain 

, ,
,

, ,

,
, ,

exp[ ]
;  ,  and

1 exp[ ]

1
.

1 exp[ ]

u u
i t i tu

i t v v
i t i tv U

g
i t v v

i t i tv U

X
s u U

X

s
X

β ε

β ε

β ε

∈

∈

+
= ∈

+ +

=
+ +

∑

∑

                                                                          (S5)  

The marginal effect of a variable , ,i t i tx X∈  is given as 
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So the marginal effects for crop categories and grasses with respect to ,i tx  are given as 

, , , , , ,
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Upon substituting , , , , ,1 c s w a g
i t i t i t i t i ts s s s s− = + + +  into eq. (S7) we have 1

, , ,( ) /u u
i t i t i ts s x− ∂ ∂ =

,( )u v v
i tv
sβ β−∑  with u v≠ , i.e., % change in u’s share due to a unit change in ,i tx  is equal to 

the net increase in per-acre returns generated from allocating a unit share from each competing 
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land use to u. The relevant data definitions are provided in Table 1 and the estimates of marginal 

effects in eq. (S7) and their standard errors are tabulated in tables 4-5 in the main text. 

 

 

Weather Outcomes: Tests for stationarity and predicting farmers’ weather expectations 

Consider an AR(4) (Greene 2008) panel time-series process such that ,( )i t i tE GD tγ γ= +  to test 

mean and trend stationarity for county i GDs: 

4 4

1 1

4
, , ,1

((1 ) 1 ) ,i t k t k i t ik k k i tkk
tD GDG γ γ γ νγ γ −= = =

−= + + − +∑ ∑∑         (S8) 

where ,i tν  is assumed to be a white noise process, iγ  represents county-level means (fixed-

effects). ,i tGD  must be stationary for the above process to be estimable. To test for stationarity of 

our weather panel data series we conduct unit-root tests for the AR process by following the 

Breitung and Meyer procedure (Breitung and Meyer 1994). The t-test relies on transforming eq. 

(S8) such that test statistic for the null hypothesis that a unit root is present, i.e., 
4

1 kk
γ

=∑ =1, is 

asymptotically normally distributed.1 Specifically, the following transformation of eq. (S8) is 

made using the first value of the process ,0iGD , 

4 4 4

1 1 1, ,0 , ,0 , ,0(1 ) )( )( ) ( .1t k k ki t i k k i t k i i t k i it GD G DD G D GG D γ ν γγ γ γ
= = =−− − −= − + − −+∑ ∑ ∑           (S9) 

Observe that under the null hypothesis, 
4

1 kk
γ

=∑ = 1, the impact of individual means vanishes 

and standard t-tests can be applied. The corresponding test statistic is termed as “unbiased test-

																																																													
1 Data transformation is necessary since under the alternative hypothesis of stationarity the t-test 
is subject to loss of power due to individual means. Breitung and Meyer’s (1994) approach is 
similar to augmented Dickey-Fuller test (Greene 2008), although the latter test proposed a bias-
corrected test-statistic with critical values differing from a normally distributed t-statistic. 
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statistic.” We implement the above test procedure for individual weather series ( , ,, ,i t i tGD SD

, ,,i t i tDRYZ WETZ ) in SAS’s “Unbiased t-test” under its proc panel command. , ,, ,i t i tGD SD  

,i tWETZ  and ,i tDRYZ  are found to be time and cross-section stationary, see Tables S3-S6. 

 

Climate change implications for regional yields and land use 

Acquiring climate projections: Monthly and Annual Average Mean-shifts 

The climate projections data were acquired from the U.S. Geological Survey’s Geo-Data Portal 

(GDP) (Blodgett 2013)2, which provides spatially rescaled outputs from General Circulation 

Models’ (GCM) at a finer grid level, referred to as statistical downscaling. We utilize the 

“Locally Constructed Analogs (LOCA) Statistical Downscaling” algorithm to area-weighted 

daily climate projections for the Dakotas’ 18 climate divisions from 1/16th degree resolution 

grids of the Coupled Model Intercomparison Project Phase 5 (CMIP5) archive of the GCMs.3 

The projections data were then matched to the counties contained in each climate division, and if 

a county overlapped with multiple climate divisions it was assigned an area-weighted average 

value of each weather outcome. 

For a formal representation of monthly and annual mean-shift operators, each date t is 

composed of a year, y, month, m, and day, d. So the corresponding yʹ  is on the same day, d, and 

month, m, as y but differs in year, with ' 50y y= + . Notation-wise, we can re-write the daily-shift 

as , ', , ,k y y m dFΔ ! . Therefore the monthly and annual mean-shifts are specified as 

																																																													
2 Available at http://cida.usgs.gov/gdp/. Last visited on 5/15/2019. 
3 One-sixteenth degree grid equals roughly 1.5 km in the latitude (Y) direction and 2.5 km in the 
longitude (X) direction. 
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Clearly, in eq. (S10a-b), , ', ,
monthly
k y y mFΔ !  varies monthly and is constant for all days within a month, 

while , ',
annual
k y yFΔ !  varies annually and is constant for all days in a year. Based on these, the future 

weather variables for a representative county i are given as 

, ', , , , ', ,

, ' , , ',

a) ;

b) .

monthly monthly
i y m i y m i y y m

annual annual
i y i y i y y

F F F

F F F

= + Δ

= + Δ

!

!
            (S11) 

In eq. (S11a-b), variables , ',
monthly
i y mF  and , '

annual
i yF  are the county-level projections that we use to 

describe climate change relative to past weather during the 1981-2010 period. Recall that we 

evaluate eq. (S10-S11) for seven distinct sets of climate projections. 

 

Predicting future Palmer’s Z 

Next we turn to future projections for our Z index that we need to predict crop yields. Since this 

index’s future projections are unavailable, we specify a regression model for Z based on its 

physical relationship as specified in (Karl 1986). That is, monthly Zs depend upon monthly 

precipitation, evapotranspiration and water holding capacity for typical soil profiles in the region. 

The Thornthwaite’s potential evapotranspiration equation specifies monthly evapotranspiration 

as a highly non-linear function of monthly precipitation, monthly average temperature, average 

day-length in a month, and an empirically generated constant (Thornthwaite 1948). We find that 

higher-order monthly temperature and precipitation terms lead to high multicollinearity. Models 

with lower-order temperature and precipitation polynomials are found to reduce 
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multicollinearity. Based on this information, we specify the following model for predicting the Z 

index: 

2
, 0 , , 1 , 2 , 3 , , ,{1,2, ... ,6}

,

1 1 ,  

with notation
:  Climate Division ,
:  date (Year*100+Month),

:  Lagged s (6-month lags),
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k t Z k t k t k t k t k t M k t M k kM k
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= + + + + + +∑ ∑ ∑! ! ! !

!
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, , , ,
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:  Standardized monthly temperature; ( ) / ( ),
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σ

= −

= −

!

! !

  (S12) 

Here P  and T  are mean precipitation and temperature respectively, while ,( )k tPσ  and 

,( )k tTσ  represent their respective standard deviations. We maximize regression fit while 

estimating eq. (S12) to ensure that projected Z values are reliable. We use historical Z values 

during 1895-2017 for 18 climate divisions in North and South Dakota. Climate division dummy 

variables are intended to control for soil’s water holding capacity. The interaction term , 1k t MT  

controls for the accumulated heat in month M due to average temperature and average length of 

the day in that month. Quadratic precipitation terms are included along with precipitation-

temperature interaction terms to, at least partially, control for the non-linear relationship. Table 

S11 presents the estimation results. Future Z projections are obtained by taking the product of 

coefficients from eq. (S12) and projected weather outcomes, see Figure S9 for results. 
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Study Area 

Historical Yields of all major crops in the Dakotas 

Annual county-level yields data for all major crops in the Dakotas’ 119 counties during 1950-

2017 are acquired from National Agricultural Statistical Service’s (NASS) QuickStats 2.0 portal. 

The average yield trends across Dakotas’ counties are visualized in Figure S6. 

Correlation between regional-level prices from USDA’s Economic Research Service (ERS) and 

commodity Futures prices  

We utilized the annual February prices for December futures contracts for maize, November 

futures contracts for soybeans and September futures contracts for spring wheat to control for 

landowner expectations of their harvest’s future market valuation. However, alfalfa futures are 

not traded and instead we use regional-level prices for alfalfa. Here we compare maize, soybeans 

and spring wheat’s future contract prices with their regional counterparts to ascertain whether 

regional-level prices are a viable candidate for landowners’ expectations of actual market 

valuations of these commodities. In Figure S7 we plot the annual soybean November futures 

prices, maize December futures prices and spring wheat September futures prices with the 

corresponding regional level prices made available by ERS’s ‘Commodity Costs and Returns 

2016 dataset.’ We find that the historical ERS prices for South and North Dakota correlate 

strongly with their contemporaneous futures prices. We conclude that it is reasonable to use 

region-level alfalfa prices to control for landowners’ pre-planting expectation of this crop’s 

actual harvest-time market price. 
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Results 

Yield-weather regressions 

Table S16 presents the full yields-weather regression model (corresponding to Table 2 in the 

main text). 

Spatial correlation among weather variables 

Potential spatial correlation among weather variables might bias the standard errors of parameter 

estimates in our yield-weather model. We utilize Conley’s (1999) procedure to control for error 

spatial autocorrelation by defining a cutoff along the x- and y-axes such that each county has at 

least one neighbor. Counties whose coordinates lie within the designated cutoffs are considered 

to be neighbors. A sandwich variance-covariance matrix is estimated, which is the weighted sum 

of covariances among spatially-connected neighbors. The weighting used is the inverse of the 

squared Euclidean distances among neighboring counties. The model inferences were found to 

be largely similar upon controlling for spatial autocorrelation in errors. Specifically, the 

significance levels of about 6% cases (four out of sixty-four coefficients) were different between 

the cases when spatial autocorrelation was controlled and not controlled (Table S17).	

	

Land Use Share Regressions: Weak instruments 

Staiger and Stock (1997) provided a decision rule for weak instruments such that when the 

regression F-statistic is less than 10 we infer that the instrument is weak. However, the above 

rule was developed for a single endogenous variable. Stock and Yogo (2005) extended this 

decision rule for more than one endogenous regressor, where the critical F-value = 20.27 is more 

appropriate. We tabulate the F-statistic for the first stage of the IV regressions (see eq. (4) in the 

main text) in Table S22. Clearly, the weak instruments problem exists only in the case of disaster 
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payments. Although the estimated coefficient of -dis payG  in tables 4 and 5 (of the main text) might 

be biased with relatively large standard errors (less precision), we found the overall land use 

shares model specification to be robust to including or excluding -dis payG . 

Land Use Share Regressions: Tests for over-identifying assumptions 

The Sargan test for over-identifying restrictions was implemented as described in Wooldridge 

(2002, pp. 123). Specifically, the estimated residuals of equation (6) in the main text are then 

regressed on all IVs and the respective exogenous variables from the equations in system (6). 

The R2 value of this auxiliary regression is multiplied by the number of observations (N), which 

is chi-squared distributed. That is, 22 ,QNR χ!  where Q is the number of over-identifying 

restrictions, which is equal to the total number of instruments including the county fixed-effects. 

The null hypothesis of the Sargan test is that the excluded instruments are correctly excluded 

from the land use shares models and that these are uncorrelated with the regression errors. The 

results for eastern counties (with soybeans) and western counties (without soybeans) are 

presented in Table S23. In estimating our land use share system, we fail to reject the over-

identifying restrictions for maize, soybeans and alfalfa while we reject these restrictions for 

spring wheat indicating that the spring wheat share model is mis-specified with regards to the 

excluded instruments. The results are presented in Table S23. 

Block-bootstrap estimation of our modelling framework 

We bootstrap our sequential estimation framework with multi-crop equations (yields, 

government payments and land use shares) to check the robustness of our estimation results. 

Given that the unit of analysis for crop yields and cropland use shares is counties while the 

Palmer Z index was obtained for climate divisions that may contain multiple counties, 
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explanatory variables might be spatially correlated. There are 18 climate divisions and 118 

counties in the Dakotas. Therefore, we implement a block bootstrap procedure with 18 climate 

divisions as designated blocks and by sampling (with replacement) all 1,224 (18 climate 

divisions x 68 years) unique climate division-year pairs. The process is iterated 500 times. 

We run the yield-weather model, i.e., model (1) in the main text, for each iteration and 

summarize the mean and standard error of regression coefficients. Across all 500 iterations there 

were a total of 3,531,000 observations for maize, 1,559,000 observations for soybeans, 3,645,500 

observations for spring wheat and 3,171,000 observations for alfalfa. The differences in 

observations across crop-type are due to inavailability of some county-level yields data. The 

block bootstrapped estimates of coefficient and their standard errors for the yield-weather model 

are provided in Table S24. Clearly, the block bootstrapped estimates are very close to the ones 

we achieve using actual data (see Table S16 in the supplementary material). This finding 

corroborates well with one where we implemented Conley’s (1999) procedure to control for 

spatial autocorrelation in regression errors, and the model inference remained largely similar (see 

Table S17). 

The block bootstrap coefficients of the land use shares regressions were estimated in three 

steps: first, the yield-weather model output is combined with market prices to obtain profit 

expectations of farmers; second, the government payments are estimated as a function of 

expected weather; and finally, the land use shares are estimated using expected profits and 

expected government payments. While the first step models crop-specific yield during 1950-

2017, the second and third steps are estimated using data during 1996-2016 using the latest 

available government payments data for insurance subsidy and disaster payments. In order to 

implement the block bootstrap in an integrated manner we retain the resampled climate divisions 
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and years from the above step (i.e., block-bootstrap estimation of yield-weather model) and 

truncate the resampled data across the 500 iteration to retain years 1996-2016. 

We present the block bootstrapped estimates of the coefficients of government payments data 

and their standard errors in Table S25. These block bootstrap estimates are largely similar to 

those using actual data for the individual government payment models (see Table S21). Some 

major exceptions include the coefficients of SD and DRYZ for soybean subsidy, which are now 

significant with the same sign as compared to those reported in Table S21. However, the sign 

and statistical significance of the intercept and the time-trends coefficients in the disaster 

payments model have reversed when compared to those using actual data.  

Finally, the block bootstrap estimates of the marginal effects of each explanatory variable on 

Dakotas’ land use shares are presented in Tables S26-S27. We separately estimate land use 

shares in the 55 eastern Dakota counties (including soybean shares) and the 63 western Dakota 

counties (excluding soy shares), corresponding to tables 4 and 5 in the main text. To obtain the 

block bootstrap estimates, we first evaluate the marginal effects for each of the 500 resampled 

datasets using equations (S7) and then report their average values and standard errors.  

While the block bootstrap based marginal effects estimate for individual land use shares in the 

eastern and western portions of the Dakotas remain largely the same (in size and significance) as 

when estimated using actual county-level data, some discrepancies occur in the standard errors. 

The coefficients of about 8% (9 out of a total of 109) of the explanatory variables (in red color) 

under block bootstrap estimation are statistically insignificant while they were significant when 

using the actual data. On the other hand, about 4.6% (5 out of a total of 109) of the explanatory 

variables (in blue color) have statistically significant coefficients under block bootstrap 
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estimation, which were found to be insignificant when using the actual data. The sign of all 

coefficients in these discrepant cases remain the same. 
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FIGURES (Supplementary Information) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1: Scatter plots of min-max versus sinusoidal interpolations of daily growing degree-days and stress degree-days. 
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Figure S2. Maize Yields vs. Number of Days in Each Degree-Celsius Bin.  
LB and UB points represent 95% confidence interval lower and upper bounds on estimated 
impact. 
 
 
 
 

 
 
Figure S3. Spring Wheat Yields vs. Number of Days in Each Degree-Celsius Bin. 
LB and UB points represent 95% confidence interval lower and upper bounds on estimated 
impact. 
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Figure S4. Alfalfa Yields vs. Number of Days in Each Degree-Celsius Bin. 
LB and UB points represent 95% confidence interval lower and upper bounds on estimated 
impact. 
 

 
 
Figure S5. Soybean Yields vs. Number of Days in Each Degree-Celsius Bin. 
LB and UB points represent 95% confidence interval lower and upper bounds on estimated 
impact. 
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Figure S6. Historical Yields for the Dakotas’ major crops, i.e., maize, alfalfa, soy and spring 
wheat. 
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Figure S7 Comparative plots of ERS prices and futures prices for maize, soybeans and spring wheat. All prices are in dollars.  
* denotes that Spring Wheat’s settlement prices from the Minneapolis Grain Exchange were calculated as daily averages of ‘Open’ 
and ‘Last’ prices.
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Frequency distribution of actual historical temperature versus climate model-based projections.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

Figure S8 a-c. Comparative histograms for temperature (oC) 
from projections data and actual station-level realizations for 
the Dakotas during 1981-2005. The data in (a) and (b) are 
climate projections from HADGEM and CNRM climate 
models, respectively. Chart (c) presents actual temperature 
realizations as observed at the weather stations.  (c) 
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Future (projected) vs. past Z distributions       

 
  

Figure S9. Distribution of growing season (April-August) Z values: 2030-’55 vs. 1981-2005. 
Panel (a) shows historical Palmer Z distribution, 1981-2005; and panel (b) shows the distribution 
of median Palmer Z projections based on the 31-day moving average mean-shifts from the seven 
climate models during 2030-’55.  
 
 
 

Quantile Values 
100% 15.2 
95% 4.5 
75% 1.4 
50% 0.12 
25% -0.9 
5% -2.6 
0% -6.3 

(a) 
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                                         (a) Maize: 40% lower yields                                                 (b) Soybeans: 31% lower yields 

     (c) Spring Wheat: 47% lower yields                                      (d) Alfalfa: 50% lower yields 
 
 

 
 

	
	
	
	
	
	
 

 

Figure S10. Historical yields (1981-2005) vs. Projected yields (2031-’55) from the yield-weather model specification based 
on the decomposed SDs (eq. 1 in main text, model II estimation results in Table S16).  Each year’s crop yields in the above 
graphs are calculated as an average of all counties in North and South Dakota. Hashed representations of projected yields are 
from A1B emissions scenario using seven GCMs, as mentioned earlier in Figure 3. Median projection in a given year is 
calculated by taking the median yield value of the seven yield projections from each of the seven climate model outputs in 
each county and then taking the arithmetic average across counties. We restrict spring wheat and alfalfa yield forecasts to 
zero for years in which these are projected to assume a negative value.  
 

	(2005 Trends) 
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   (a)                                                                                                               (b) 
Figure S11 a-b. Spatial distribution of percent change in yields and profits driven by projected climate change by 2030-’55 relative to 
1981-2005. Panel (a) shows percent change in maize yields (bushels/acre, top number) and spring wheat yields (bushels/acre, bottom 
number) for each county in the Dakotas. b) Percent change in maize profits ($/acre, top number) and spring wheat profits ($/acre, 
bottom number) for each county in the Dakotas. Red partitioning signifies the east-west frontier such that soybean is cultivated mainly 
in the east. 
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Figure S12. Climate-driven acreage changes by 2031-’55 relative to 1981-2005 from the yield-weather model specification 
based on the decomposed SDs (eq. 1 in main text, model II in Table S16). Land use change ranges in each panel are in acres per 
thousand county acres. White-colored counties signify missing yields data for one or more crops during the entire study period. 

(b) Change in Spring Wheat Acreage	 (d) Change in Alfalfa Acreage	

(c) Change in Grass Acreage	(a) Change in Maize /Soy Acreage	
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   (a) Change in Maize/Soy Acreage                                           (c) Change in Grass Acreage 

	

	

	

	

	

	

	
	
	
                 (b) Change in Spring Wheat Acreage                                          (d) Change in Alfalfa Acreage	

	

	Figure S13. Projected acreage change due to climate-based temperature changes by 2031-’55 relative to the 1981-2005, 
holding precipitation fixed. The unit of land use change in the color legends is acres per-thousand county-acres. 
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            (a) Change in Maize/Soy Acreage                                             (c) Change in Grass Acreage	

	

	
	
	
	
	
	 		

	

	

	
(b) Change in Spring Wheat Acreage                                    (d) Change in Alfalfa Acreage	

	

 
  

Figure S14. Projected acreage change due to climate-based precipitation changes by 2031-’55 relative to the 1981-2005, 
holding temperature fixed. The unit of land use change in the color legends is acres per-thousand county-acres. 

Missouri River 
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TABLES (Supplementary Information) 
 

Table S1: Summary Statistics based on daily temperature data for crop-specific growing season 
using min-max and sinusoidal interpolations 
Functional Form Variable Mean Standard Deviation Minimum Maximum 
Maize (N = 954,314)     

Min-Max GD 8.05 4.53 0 18.00 
Sinusoidal GD 8.23 5.12 0 18.04 
Min-Max SD 0.25 0.75 0 11.95 
Sinusoidal SD 0.11 0.40 0 11.95 

Soybeans (N = 954,314)     
Min-Max GD 9.05 4.90 0 20.00 
Sinusoidal GD 9.22 5.43 0 20.05 
Min-Max SD 0.12 0.50 0 9.95 
Sinusoidal SD 0.05 0.24 0 9.95 

Spring Wheat (N = 946,389)     
Min-Max GD 6.26 4.04 0 14.00 
Sinusoidal GD 6.39 4.60 0 14.08 
Min-Max SD 0.38 1.01 0 14.95 
Sinusoidal SD 0.14 0.51 0 13.95 
Alfalfa (N = 946,389)     
Min-Max GD 6.66 4.45 0 16.00 
Sinusoidal GD 6.74 5.03 0 16.08 
Min-Max SD 0.38 1.01 0 14.95 
Sinusoidal SD 0.20 0.63 0 14.95 
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Table S2: Pearson correlation coefficients of daily growing and stress degree days using min-
max and sinusoidal interpolations with p-value in the parentheses 
 
Maize 

Functional Form  Min-Max Sinusoidal Min-Max Sinusoidal 
  GD GD SD SD 
Min-Max GD 1 0.995 0.442 0.394 

   (<0.0001) (<0.0001) (<0.0001) 
Sinusoidal GD  1 0.473 0.417 

    (<0.0001) (<0.0001) 
Min-Max SD   1 0.975 

     <0.0001 
Sinusoidal SD    1 

Soybeans 
Functional Form  Min-Max Sinusoidal Min-Max Sinusoidal 

  GD GD SD SD 
Min-Max GD 1 0.996 0.344 0.303 

   (<0.0001) (<0.0001) (<0.0001) 
Sinusoidal GD  1 0.372 0.325 

   <0.0001 (<0.0001) 
Min-Max SD   1 0.975 

    (<0.0001) 
Sinusoidal SD    1 

Spring Wheat      
Functional Form  Min-Max Sinusoidal Min-Max Sinusoidal 

  GD GD SD SD 
Min-Max GD 1 0.989 0.532 0.437 

  (<0.0001) (<0.0001) (<0.0001) 
Sinusoidal GD  1 0.533 0.423 

   <0.0001 (<0.0001) 
Min-Max SD   1 0.949 

    (<0.0001) 
Sinusoidal SD    1 

Alfalfa      
Functional Form  Min-Max Sinusoidal Min-Max Sinusoidal 

  GD GD SD SD 
Min-Max GD 1 0.992 0.542 0.487 

  (<0.0001) (<0.0001) (<0.0001) 
Sinusoidal GD  1 0.562 0.495 

   (<0.0001) (<0.0001) 
Min-Max SD   1 0.974 

    (<0.0001) 
Sinusoidal SD    1 

 
Notes: The correlation estimates across the weather outcomes obtained using the min-max and 
sinusoidal interpolation methods are presented with the red color.  
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Table S3. Unit Root Regressions for Maize’s seasonal Weather Outcomes. 4
0 1
: 1.

k kH γ
=

=∑  

Regressors GD SD DRYZ WETZ 
Trend 0.54a -0.02 -0.001 0.02a 

, 1i tW −   0.64a 0.40a 0.04a 0.01 

, 2i tW −  0.10a 0.03b -0.08a 0.03a 

, 3i tW −  0.08a 0.06a 0.02c -0.04a 

, 4i tW −  0.02b 0.14a 0.06a -0.005 
County Fixed-Effects Yes Yes Yes Yes 
R2 0.85 0.63 0.03 0.04 
N 7,367 7,367 7,367 7,367 
Unbiased t-test -11.96a -11.39a -28.33a -31.55a 

a p<0.01, b p<0.05, c p<0.1 
Notes: Regressors 

, , {1, 2,3, 4}i t kW k− ∈  denote lagged variables corresponding to only the 
dependent variable in each case. 

	

	

	

	

Table S4. Unit Root Regressions for Soybean’s seasonal Weather Outcomes. 4
0 1
: 1.

k kH γ
=

=∑  
Regressors GD SD DRYZ WETZ 
Trend -0.33a -0.03a -0.001 0.02a 

, 1i tW −   0.70a 0.36a 0.04a 0.003 

, 2i tW −  0.07a 0.003 -0.08a 0.03a 

, 3i tW −  0.08a 0.06a 0.02c -0.04a 

, 4i tW −  0.01 0.12a 0.06a -0.01 
County Fixed-Effects Yes Yes Yes Yes 
R2 0.85 0.56 0.03 0.04 
N 7,481 7,481 7,481 7,481 
Unbiased t-test -11.55a -12.52a -28.87a -32.20a 

a p<0.01, b p<0.05, c p<0.1 
Notes: Regressors 

, , {1, 2,3, 4}i t kW k− ∈  denote lagged variables corresponding to only the 
dependent variable in each case. 
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Table S5. Unit root regressions for Spring Wheat’s weather outcomes. 4
0 1
: 1.

k kH γ
=

=∑  
Regressors GD SD DRYZ WETZ 
Trend 0.18b 0.66 -0.0001 0.02a 

, 1i tW −   0.67a 0.48a 0.12a -0.05a 

, 2i tW −  0.05a 0.10a -0.11a 0.07a 

, 3i tW −  0.11a 0.05a 0.005 -0.08a 

, 4i tW −  0.01 0.12a 0.06a -0.04a 
County Fixed-Effects Yes Yes Yes Yes 
R2 0.82 0.78 0.04 0.04 
N 7,385 7,385 7,385 7,385 
Unbiased t-test -11.75a -10.45a -28.68a -31.61a 

a p<0.01, b p<0.05, c p<0.1 
Notes: Regressors , , {1, 2,3, 4}i t kW k− ∈  denote lagged variables corresponding to only the 
dependent variable in each case. 
	

	

	

	

Table S6. Unit root regressions for Alfalfa’s weather outcomes. 4
0 1
: 1.

k kH γ
=

=∑  
Regressors GD SD DRYZ WETZ 
Trend 0.24a 0.05b 0.0002 0.02a 

, 1i tW −   0.67a 0.46a 0.12a -0.05a 

, 2i tW −  0.04a 0.05a -0.11a 0.07a 

, 3i tW −  0.12a 0.06a 0.01 -0.07a 

, 4i tW −  0.01 0.12a 0.06a -0.04a 
County Fixed-Effects Yes Yes Yes Yes 
R2 0.83 0.66 0.04 0.04 
N 7,465 7,465 7,465 7,465 
Unbiased t-test -11.08a -10.45a -30.25a -33.03a 

a p<0.01, b p<0.05, c p>0.1 
Notes: Regressors , , {1, 2,3, 4}i t kW k− ∈  denote lagged variables corresponding to only the 
dependent variable in each case. 
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Weather predictions corresponding to eq. (4) under ‘Methods’ in the main text 
 
Table S7. Models for Maize’s Seasonal Weather Outcomes. 
	

Regressors GD SD DRYZ WETZ 
Trend 0.40a -0.09a 0.002c 0.02a 

, 1i tGD −  0.64a 0.02a 0.0004a -0.001a 

, 2i tGD −  0.12a -0.002 -0.001a 0.001a 

, 3i tGD −  0.07a -0.002 -0.0001 -0.0003 

, 4i tGD −  0.01 0.0004 0.0003a 0.0001 

, 1i tSD −  0.09 0.37a 0.005a -0.01a 

, 2i tSD −  0.00 0.06a 0.001 0.01a 

, 3i tSD −  0.05 0.03c -0.003a 0.001 

, 4i tSD −  0.11 0.11a -0.001 0.003b 

, 1i tDRYZ −   -5.96a -2.15a -0.02 -0.02 

, 2i tDRYZ −  -5.28a -1.98a -0.11a -0.06a 

, 3i tDRYZ −  0.58 -0.27 0.02c -0.08a 

, 4i tDRYZ −  -1.25 -0.27 0.06a 0.04c 

, 1i tWETZ −   6.01a 0.26b -0.06a -0.03b 

, 2i tWETZ −  2.26a 0.46a -0.04a 0.03a 

, 3i tWETZ −  -0.88 -0.65a -0.06a -0.03a 

, 4i tWETZ −
 0.24 0.46a 0.02c -0.01 

County Fixed-Effects Yes Yes Yes Yes 
R2 0.85 0.66 0.06 0.06 
N 7,367 7,367 7,367 7,367 

a p<0.01, b p<0.05, c p<0.1 
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Table S8. Models for Soybean’s Seasonal Weather Outcomes. 
	

Regressors GD SD DRYZ WETZ 
Trend 0.18 -0.06a 0.002c 0.02a 

, 1i tGD −  0.70a 0.01a 0.0004a -0.001a 

, 2i tGD −  0.08a -0.002 -0.001a 0.001a 

, 3i tGD −  0.06a -0.001 -0.0001 -0.0003 

, 4i tGD −  0.01 0.001 0.0003a 0.0001 

, 1i tSD −  0.07 0.33a 0.006a -0.02a 

, 2i tSD −  -0.05 0.03b 0.001 0.01a 

, 3i tSD −  0.25 0.03b -0.005a -0.0004 

, 4i tSD −  0.02 0.09a -0.002 0.01a 

, 1i tDRYZ −   -6.88a -1.27a -0.02 -0.01 

, 2i tDRYZ −  -5.19a -1.26a -0.10a -0.07a 

, 3i tDRYZ −  1.02 -0.15 0.02c -0.07a 

, 4i tDRYZ −  -0.83 -0.12 0.06a 0.04c 

, 1i tWETZ −   6.26a 0.002 -0.06a -0.03b 

, 2i tWETZ −  1.89c 0.14c -0.04a 0.03a 

, 3i tWETZ −  -1.11 -0.40a -0.06a -0.04a 

, 4i tWETZ −
 0.86 0.26a 0.01c -0.01 

County Fixed-Effects Yes Yes Yes Yes 
R2 0.85 0.58 0.06 0.06 
N 7,481 7,481 7,481 7,481 

a p<0.01, b p<0.05, c p<0.1 
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Table S9. Models for Spring Wheat’s Seasonal Weather Outcomes. 
	
Regressors GD SD DRYZ WETZ 
Trend 0.14 -0.03 0.002b 0.02a 

, 1i tGD −  0.67a 0.04a 0.0001 -0.0002 

, 2i tGD −  0.08a 0.004 -0.001a 0.001a 

, 3i tGD −  0.05a -0.01c 0.001a -0.0001 

, 4i tGD −  0.03b -0.01a -0.0001 0.00003 

, 1i tSD −  0.17a 0.38a 0.004a -0.01a 

, 2i tSD −  -0.10 0.07a 0.001 -0.0005 

, 3i tSD −  0.32a 0.05a -0.002b -0.001 

, 4i tSD −  -0.20a 0.11a -0.001 0.003a 

, 1i tDRYZ −   -5.27a -1.92a 0.08a -0.07a 

, 2i tDRYZ −  -8.02a -2.51a -0.10a -0.07a 

, 3i tDRYZ −  0.20 -1.13a -0.02 -0.10a 

, 4i tDRYZ −  -0.48 -0.45c 0.06a -0.04b 

, 1i tWETZ −   6.74a 1.22a -0.02a -0.10a 

, 2i tWETZ −  0.86 1.16a 0.02b 0.05a 

, 3i tWETZ −  -3.61a -1.29a -0.08a -0.08a 

, 4i tWETZ −
 0.69 0.54a -0.03a -0.06a 

County Fixed-Effects Yes Yes Yes Yes 
R2 0.83 0.69 0.07 0.06 
N 7,385 7,385 7,385 7,385 

a p<0.01, b p<0.05, c p<0.1 
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Table S10. Models for Alfalfa’s Seasonal Weather Outcomes. 
	
Regressors GD SD DRYZ WETZ 
Trend 0.18c -0.03c 0.002b 0.02a 

, 1i tGD −  0.67a 0.04a 0.0001 -0.0002 

, 2i tGD −  0.08a 0.003 -0.001a 0.001a 

, 3i tGD −  0.05a -0.01 0.0005a -0.0001 

, 4i tGD −  0.03b -0.01a -0.0001 0.0001 

, 1i tSD −  0.17a 0.38a 0.004a -0.01a 

, 2i tSD −  -0.11 0.07a 0.001 -0.001 

, 3i tSD −  0.36a 0.05a -0.002a -0.001 

, 4i tSD −  -0.23a 0.11a -0.001 0.003a 

, 1i tDRYZ −   -5.93a -1.88a 0.08a -0.07a 

, 2i tDRYZ −  -8.87 -2.48a -0.10a -0.07a 

, 3i tDRYZ −  0.11 -1.12a -0.02 -0.10a 

, 4i tDRYZ −  -0.68a -0.44c 0.06a -0.05b 

, 1i tWETZ −   7.62a 1.21a -0.02a -0.10a 

, 2i tWETZ −  0.81 1.13a 0.01c 0.05a 

, 3i tWETZ −  -3.76a -1.26a -0.08a -0.08a 

, 4i tWETZ −
 0.60 0.50a -0.03a -0.06a 

County Fixed-Effects Yes Yes Yes Yes 
R2 0.84 0.69 0.06 0.06 
N 7,465 7,465 7,465 7,465 

a p<0.01, b p<0.05, c p<0.1 
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Table S11. Model for predicting Palmer Z 
 

 
 

 
  
 
 
 
 
 
 
 
 
 
 
                
 
 
 
                      
 
 
 
 
 
 
 
 
 

                               a p<0.01, b p<0.05, c p<0.1 
	 	

Variable Estimate Variance Inflation Factor 
Intercept 2.65a 0 
P!  2.91a 4.5 
2P!  -0.11a 3.0 
PT! !  -0.31a 3.4 

1tZ −
  0.18a 1.1 
2tZ −
  0.10a 1.2 
3tZ −
  0.06a 1.2 
4tZ −
  0.03a 1.2 
5tZ −
 0.04a 1.2 
6tZ −
  0.04a 1.1 
1JANT ⋅  -0.01a 1.3 
1FEBT ⋅  -0.01a 1.4 
1MART ⋅  -0.05a 1.7 
1APRT ⋅  -0.07a 2.3 
1MAYT ⋅  -0.08a 2.5 
1JUNT ⋅  -0.09a 2.3 
1JULT ⋅  -0.06a 2.1 
1AUGT ⋅  -0.05a 2.1 
1SEPT ⋅  -0.05a 2.3 
1OCTT ⋅  -0.04a 2.1 
1NOVT ⋅  -0.03a 1.6 

Climate-divisions 
Fixed Effects Yes  

R2 0.912  
N 26,460  
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Dakota climate projections for 2031-’55 relative to 1981-2005: Monthly and annual mean-shifts 

Table S12. Monthly changes in temperature (averaged over the Dakotas): Historical realizations 
during 1981-2005 vs. Projected (31-day M.A.) weather during 2031-’55. 
 

Month 
oC  

(1981-2005) 
oC  

(2031-2055) Change (oC) 

April 5.7 8.2 2.5 
May 11.1 13.8 2.7 
June 15.3 17.9 2.6 
July 18.0 20.8 2.8 

August 17.3 20.9 3.6 
Annual (Average) 13.5 16.3 2.8 

Notes: Daily temperature projections were calculated by superimposing a daily mean-shift 
operator on the temperatures recorded from weather stations on the same date 50 years before. 
The 31-day moving average mean-shift operator for a particular date was the average of daily 
temperature changes (obtained from climate models) for that date and for each date within the 
15-days before and after that date. 
 
Table S13. Monthly changes in precipitation (averaged over the Dakotas): Historical realizations 
during 1981-2005 vs. Projected (31-day M.A.) weather during 2031-’55. 
 

Month Hundreds of mm 
(1981-2005) 

Hundreds of mm  
(2031-2055) %Change 

April 44.8 34.0 -24 
May 70.9 48.0 -32 
June 85.7 55.0 -36 
July 74.3 48.5 -34 

August 53.8 33.8 -37 
Annual (Total) 329.5 219.3 -33 

Notes: Daily precipitation projections were calculated by superimposing a daily mean-shift 
operator on the precipitation recorded from weather stations on the same date 50 years before. 
The 31-day moving average mean-shift operator for a particular date was the average of daily 
temperature changes (obtained from climate models) for that date and for each date within the 
15-days before and after that date. 
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Table S14. Projected average change in growing-season weather (averaged over the Dakotas): 
Historical realizations during 1981-2005 vs. Projected (31-day moving average) weather during 
2031-’55. 
	
Crop Variable 1981-2005 (Realized) 2031-2055 (Projected) % Change 
NORTH DAKOTA    

  
MAIZE 
  

GD 908.3 1,106.6 21.8 
SD 15.8 43.5 175.3 
DRYZ 0.8 7.7 862.5 
WETZ 1.6 0.03 -98.0 

  
SOY 
  

GD 1,005.7 1,212.6 20.6 
SD 6.8 24.0 253.9 
DRYZ 0.6 7.7 1,275.0 
WETZ 2.0 0.03 -98.2 

  
SPRING 
WHEAT 
  

GD 696.4 846.3 21.5 
SD 19.1 44.5 133.0 
DRYZ 0.8 7.70 862.5 
WETZ 1.6 0.04 -97.5 

  
ALFALFA 
  

GD 726.7 912.4 25.6 
SD 3.8 13.6 257.9 
DRYZ 0.8 7.73 866.2 
WETZ 1.6 0.04 -97.5 

 SOUTH DAKOTA 

  
MAIZE 
  

GD 1,084.5 1,268.3 17.0 
SD 39.4 90.5 130.0 
DRYZ 0.6 7.9 1,174.2 
WETZ 1.4 0.03 -97.7 

  
SOY 
  

GD 1,188.8 1,378.2 15.9 
SD 20.0 56.7 183.5 
DRYZ 0.5 7.9 1,310.7 
WETZ 1.3 0.03 -97.6 

  
SPRING 
WHEAT 
  

GD 818.8 949.4 16.0 
SD 45.0 86.0 91.1 
DRYZ 0.7 7.24 934.3 
WETZ 1.7 0.14 -91.8 

  
ALFALFA 
  

GD 894.6 1,064.6 19.0 
SD 12.7 35.0 175.6 
DRYZ 0.4 7.2 1,700.0 
WETZ 1.3 0.14 -89.2 

Notes: Median climate model outputs are used to represent weather projections during 2031-’55. 
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Table S15. Projected average change in decomposed SDs: 1981-2005 vs. 2031-’55. 
 

Notes: Median climate model outputs are used to represent weather projections during 2031-’55. 

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Crop Variable 1981-2005 (Realized) 2031-2055 (Projected) % Change 

 MAIZE 
SD1 1.9 1.6 -15.8 
SD23 6.7 6.6 -1.5 
SD4+ 21.1 42.6 101.9 

 SOY 
SD1 1.1 1.5 36.4 
SD23 3.2 5.6 75.0 
SD4+ 6.2 22.6 264.5 

SPRING 
WHEAT 

SD1 1.5 1.4 -6.7 
SD23 5.9 5.8 -1.7 
SD4+ 34.7 42.5 22.5 

 ALFALFA 
SD1 1.4 1.1 -21.4 
SD23 5.3 4.0 -24.5 
SD4+ 29.1 12.6 -56.7 
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Table S16. The yields-weather regression model. Dependent Variable: Yields (bushels/acre) 

a p<0.01, b p<0.05, c p<0.1 
Note 1: Models I and II in the case of each crop represent, respectively, estimation results with 
composite SDs and decomposed SDs. 
Note 2: For regression coefficients to be comparable across crop-types, we converted alfalfa 
yields from tons/acre to bushels/acres @ 1 ton = 37 bushels, available here. 
Note 3: Crop prices, usually available at state-level or at higher aggregation, are not included in 

 Maize Soybeans Spring Wheat Alfalfa 
Variable I II I II I II I II 
Intercept 23.414a 23.622a 24.091a 23.616a 25.424a 25.673a 25.051a 24.987a 
t 0.746a 0.756a 0.198a 0.199a 0.655a 0.664a -0.074 -0.079 
t65 1.117a 1.101a 0.419a 0.417a -0.224a -0.242a 1.450a 1.452a 
t80 -0.956a -0.949a -0.305a -0.295a -0.330a -0.319a -1.215a -1.213a 
t95 1.626a 1.614a 0.299a 0.274a 0.769a 0.761a 0.420a 0.430a 
GD 0.006a 0.005a 0.003a 0.002a 0.003a 0.002a 0.004a 0.005a 
t x GD 0.0003a 0.0003a 0.00002b 0.00001 0.0001a 0.0001a 0.0002a 0.0002a 
SD -0.163a  -0.069a  -0.058a  -0.104a  
t x SD -0.006a  -0.001a 

 
 0.0005a  0.0001  

SD1  -0.086  0.183a  0.038  -0.316a 
t x SD1  -0.002  0.008a  0.001  -0.003 
SD23  -0.255c  -0.248a  0.033  -0.297b 
t x SD23  -0.016b  -0.005  -0.002  0.014b 
SD4+  -2.072a  -0.452a  -1.538a  -2.677a 
t x SD4+  -0.072a  -0.008a  -0.013a  -0.002 
DRYZ -3.781a -3.795a -1.402a -1.413a -2.011a -2.002a -5.151a -5.134a 
t x DRYZ -0.124a -0.124a -0.013b -0.012b -0.036a -0.036a -0.080a -0.078a 
DRYZ x SD 0.026a 0.026a 0.009a 0.010a 0.005a 0.005a 0.015a 0.016a 
WETZ -0.272b -0.277b -0.026 -0.018 -0.313a -0.316a 1.981a 1.975a 
t x WETZ -0.049a -0.049a -0.010a -0.010a -0.016a -0.015a -0.017a -0.017a 
WETZ x SD 0.022a 0.021a 0.023a 0.023a -0.001 -0.001 0.011a 0.010a 

dry
iQ  x SD 0.00002 -0.0001 0.002  0.001 0.0003 0.0003 0.0001 -0.0001 
dry
iQ  x DRYZ -0.049b -0.049b 0.008 0.007 -0.010 -0.009 -0.075a -0.076a 
wet
iQ  x WETZ -0.010 -0.010 -0.008c -0.008c -0.033a -0.033a -0.022c -0.021c 

County F.E. Yes Yes Yes Yes Yes Yes Yes Yes 

R2 0.821 0.821 0.805 0.807 0.751 0.752 0.739 0.740 
N 7,062 

 
3,118 

 
7,291 

 
6,342 
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the commonly implemented yield-weather model. While crop acreage is generally more 
responsive to price, much of yield response to price arises from induced innovation with some 
time lag (Hayami and Ruttan 1971, pp. 59-61). Agricultural input use does respond to crop 
prices, potentially impacting yields, but the yield-price relationship may depend on other factors 
making it hard to estimate with much confidence. For example, a crop’s price increase can lead 
to acreage expansion onto less suitable land. Furthermore, intensification of a crop within a 
rotation may lead to a loss in rotation benefits, such as loss of nitrogen carryover when the soy-
maize rotation shifts to soy-maize-maize due to higher maize prices. 
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Table S17. Yield-weather model: Comparison of the heteroscedasticity-robust standard 
errors (1st row) and spatial autocorrelation-corrected standard errors (2nd row). 

 MAIZE SOYBEAN
S 

SPRING WHEAT ALFALFA 

Variable Estimate Estimate Estimate Estimate 

t 

0.831 
(0.072)a 
(0.091)a 

 

0.209 
(0.037)a 
(0.031)a 

0.654 
(0.026)a 
(0.036)a 

-0.064 
(0.065) 
(0.124) 

t65 

1.081 
(0.116)a 
(0.159) a 

 
 

0.385 
(0.058)a 
(0.064)a 

-0.230 
(0.041)a 
(0.056)a 

1.463 
(0.113)a 
(0.166)a 

t80 
-0.858  

(0.105)a 
(0.242)a 

-0.230 
(0.048)a 
(0.070)a 

-0.292 
(0.038)a 
(0.050)a 

-1.322 
(0.116)a 
(0.152)a 

t95 
1.370  

(0.104)a 
(0.160)a 

0.133 
(0.043)a 
(0.066)a 

0.654 
(0.039)a 
(0.069)a 

0.565 
(0.105)a 
(0.156)a 

GD 
0.0026 

(0.0009)a 
(0.0017)c 

0.002 
(0.0003)a 
(0.0003)a 

0.002 
(0.0005)a 
(0.0009)a 

0.004 
(0.001)a 
 (0.002)a 

t x GD 
0.0002 

(0.00003)a 
(0.00008)a 

-0.000001 
(0.00001) 
(0.00001) 

0.00002 
(0.00002) 
(0.00005) 

0.0002 
(0.00004)a 
(0.00014)c 

SD 
-0.148 

(0.012)a 
(0.026)a 

-0.065 
(0.011)a 
(0.014)a 

-0.055 
(0.003)a 
(0.006)a 

-0.106 
(0.009)a 
(0.013)a 

t x SD 
-0.005 

(0.0004)a 
(0.001)a 

-0.0014 
(0.0004)a 
(0.0005)a 

 

-0.0002 
(0.0001)c 
(0.0003) 

0.00003 
(0.0003) 
 (0.001) 

DRYZ 
-3.637 

(0.161)a 
(0.277)a 

-1.351 
(0.079)a 
(0.098)a 

 

-2.015 
(0.058)a 
(0.084)a 

-5.384 
(0.163)a 
(0.259)a 

t x DRYZ 
-0.120 

(0.010)a 
(0.019)a 

-0.006 
(0.0054) 
(0.0051) 

 

-0.031 
(0.004)a 
(0.005)a 

-0.091 
(0.009)a 
(0.015)a 
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DRYZ x SD 
0.026 

(0.003)a 
(0.004)a 

0.010 
(0.003)a 
(0.002)a 

 

0.004 
(0.001)a 
(0.001)a 

0.017 
(0.002)a 
(0.004)a 

WETZ 
-0.078 
(0.114) 
(0.160) 

0.012 
(0.056) 
(0.038) 

-0.292 
(0.041)a 
(0.064)a 

2.112 
(0.106)a 
(0.193)a 

t x WETZ 
-0.034 

(0.005)a 
(0.007)a 

-0.009 
(0.002)a 
(0.002)a 

-0.015 
(0.002)a 
(0.003)a 

-0.018 
(0.005)a 
(0.008)a 

WETZ x SD 
0.024 

(0.004)a 
(0.004)a 

0.028 
(0.004)a 
(0.004)a 

-0.0008 
(0.0010) 
(0.0013) 

0.013 
(0.003)a 
(0.003)a 

dry
iQ  x SD 

0.0002 
(0.001) 
(0.003) 

0.002 
(0.0010)c 
(0.0009)a 

 

-0.0003 
(0.0003) 
(0.001) 

0.0001 
(0.001) 
(0.002) 

dry
iQ  x DRYZ 

-0.059 
(0.021)a 
(0.023)a 

0.003 
(0.009) 
(0.009) 

-0.010 
(0.007) 
(0.009) 

-0.094 
(0.026)a 
(0.044)a 

wet
iQ  x WETZ 

-0.010 
(0.012) 
(0.015) 

-0.006 
(0.004) 
(0.005) 

-0.034 
(0.005)a 
(0.007)a 

-0.021 
(0.012)c 
(0.025) 

County F.E. Yes Yes Yes Yes 
R2 0.761 

 
0.758 

 
0. 6728 0.555 

N 6935 
 

2911 
 

7067 
 

6123 
 a p<0.01, b p<0.05, c p<0.1 

Notes: As in Conley’s (1999) procedure, the intercept is excluded while estimating the above 
models. 
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Decadal summaries of weather variables 

Table S18. Decadal means of monthly (April-August) weather outcomes is defined in eq. (S1-
S2). 
 
Variable 1950-’60 1961-’70 1971-’80 1981-’90 1991-’00 2001-’10 
MAIZE       
GD 787.35 965.65 1,014.24 1,025.29 1,019.39 973.13 
SD 24.70 32.44 39.15 37.47 20.27 28.93 
DRYZ 0.65 0.37 1.05 1.14 0.19 0.81 
WETZ 0.83 1.63 0.82 0.76 2.43 1.49 
SOYBEANS       
GD 1,094.79 1,178.12 1,194.64 1,109.21 1,092.12 987.46 
SD 16.05 15.32 18.38 15.21 6.33 8.32 
DRYZ 0.43 0.26 1.11 1.08 0.08 0.50 
WETZ 0.68 1.63 0.76 0.73 2.28 1.74 
SPRING WHEAT      
GD 595.15 727.66 767.87 778.83 748.36 715.90 
SD 33.77 43.54 53.91 52.63 29.21 39.98 
DRYZ 0.72 0.26 1.07 1.38 0.16 0.79 
WETZ 0.58 1.68 0.92 1.05 2.45 1.26 
ALFALFA       
GD 629.36 773.23 784.41 762.82 783.07 773.17 
SD 33.77 43.54 44.84 35.22 29.06 42.91 
DRYZ 0.72 0.26 0.95 1.64 0.13 0.78 
WETZ 0.58 1.68 1.10 0.76 2.06 1.40 
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Seasonally-differentiated weather effects on crop yields 
	

Table S19. Within-season weather Impacts: Maize and Soybeans. 
Growing Season: May-August MAIZE SOYBEAN 
Variable Estimate Estimate 
Intercept 24.732a 23.099a 
t 0.757a 0.179a 
t65 1.084a 0.459a 
t80 -0.899a -0.337a 
t95 1.671a 0.340a 
GD_MAY_JUN 0.018a 0.008a 
t x GD_MAY_JUN 0.001a 0.0005a 
GD_JUL_AUG -0.005b -0.001 
t x GD_JUL_AUG -0.0005a -0.0004a 
SD_MAY_JUN 0.198a 0.097b 

t x SD_MAY_JUN 0.010a 0.005a 
SD_JUL_AUG -0.200a -0.092a 
t x SD_JUL_AUG -0.009a -0.003a 
DRYZ_MAY_JUN -2.345a -0.852a 
t x DRYZ_MAY_JUN -0.125a 0.032a 

DRYZ x SD_MAY_JUN 0.029c 0.010 
DRYZ_JUL_AUG -5.891a -2.032a 
t x DRYZ_JUL_AUG -0.126a -0.042a 
DRYZ x SD_JUL_AUG 0.031a 0.012a 
WETZ_MAY_JUN -0.435b -0.447a 
t x WETZ_MAY_JUN -0.045a -0.009b 

WETZ x SD_MAY_JUN 0.050 0.031 
WETZ_JUL_AUG 0.297 0.431a 
t x WETZ_JUL_AUG -0.046a -0.014a 
WETZ x SD_JUL_AUG 0.060a 0.064a 

dry
iQ  x SD -0.0003 0.001 
dry
iQ  x DRYZ -0.036c 0.004 
wet
iQ  x WETZ -0.015 -0.008b 

County F.E. Yes Yes 
R2 0.831 0.822 
N 7,062 

 
3,118 

 a p<0.01, b p<0.05, c p<0.1 
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Table S20. Seasonal Weather Impacts: Spring Wheat and Alfalfa. 
 

a p<0.01, b p<0.05, c p<0.1 
 

 

 

Growing Season: April-July SPRING WHEAT ALFALFA 
Variable Estimate Estimate 
Intercept 26.654a 27.047a 
t 0.702a 0.003 
t65 -0.338a 1.246a 
t80 -0.213a -0.969a 
t95 0.757a 0.316a 
GD_APR_MAY 0.021a 0.006 
t x GD_APR_MAY 0.000002 -0.000002 
GD_JUN_JUL -0.008a 0.004c 
t x GD_JUN_JUL 0.00008c 0.0002b 
SD_APR_MAY 0.052a -0.198a 
t x SD_APR_MAY 0.011a 0.016a 
SD_JUN_JUL -0.062a -0.096a 
t x SD_JUN_JUL -0.001a -0.001a 
DRYZ_APR_MAY -1.360a -3.534a 
t x DRYZ_APR_MAY -0.016b -0.066a 
DRYZ x SD_APR_MAY -0.035a 0.044c 
DRYZ_JUN_JUL -2.478a -5.950a 
t x DRYZ_JUN_JUL -0.030a -0.064a 
DRYZ x SD_JUN_JUL 0.007a 0.019a 
WETZ_APR_MAY 0.022 2.555a 
t x WETZ_APR_MAY -0.013a -0.043a 
WETZ x SD_APR_MAY -0.006 0.086b 
WETZ_JUN_JUL -0.435a 1.519a 
t x WETZ_JUN_JUL -0.014a 0.006 
WETZ x SD_JUN_JUL -0.002 0.010a 

dry
iQ  x SD -0.0003 -0.0003 
dry
iQ  x DRYZ -0.004 -0.064b 
wet
iQ  x WETZ -0.033a -0.022c 

County F.E. Yes Yes 
R2 0.769 0.743 
N 7,291 

 
6,342 
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Table S21. Instrumental variable regressions for government payments 

Regressors Crop Insurance Subsidy Disaster 
Payments 

Farm 
Subsidies  Maize Soybeans Wheat 

Intercept 4.27a -22.24a 10.96a 0.96 15.21a 
Trends    0.16a  
Maize Price 0.79a     
Soy Price  0.39a    
Wheat Price   0.37a   
Average Price    -0.03 -0.21a 
GD -0.001c -0.001 -0.0002 -0.006a  
SD 0.02a 0.11 0.002 0.04a  
DRYZ 0.14 -0.66 0.24a 4.89a  
WETZ 0.95a 1.56a 0.28a 3.01a  
County Fixed-Effects Yes Yes Yes Yes Yes 
R2 0.71 0.80 0.84 0.11 0.60 
N 2,346 2,344 2,375 2,320 2,346 

a p<0.01, b p<0.05, c p<0.1 
Notes:  

1. The ‘Average Price’ variable above equals the unweighted mean of each year’s price of 
maize, soybean and wheat. 

2. Farm subsidies, i.e., variable  farm subsidyG , include Direct and Counter-Cyclical Payments, 
Average Crop Revenue Election Program, production flexibility contracts, market loss 
assistance, Loan Deficiency Payments (LDP), commodity certificates, LDP like-grazing 
payments, marketing loan gains, dairy program, livestock indemnity, agricultural trade 
adjustment assistance, hard winter wheat incentive program, and miscellaneous subsidies.	
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Table S22: Weak instrument tests corresponding to IV regression for land use shares estimation 
(see eq. (4) in the main text). 

 
 
 
 
 
 
 
 
 
 
	

	

	

Table S23. Tests for over-identifying assumptions for land use share regressions. 

	 	

	

	

	

	

	

	

	

	

	

Endogenous 
Variable 

F-statistic  
(1st stage IV regression) 

.
c
ins subsidyG   34.78 

.
s
ins subsidyG   63.66 

.
w
ins subsidyG  81.14 

-dis payG   0.92 

 farm subsidyG   23.16 

Share Equation R2 N N.R2 Q p-value Inference 
Eastern Dakota Counties 
Maize 0.12 616 73.9 73 0.448 Fail to reject the null 
Soybeans 0.13 616 80.1 73 0.269 Fail to reject the null 
Spring Wheat 0.30 616 20.9 73 <0.0001 Reject the null 
Alfalfa 0.12 616 73.9 73 0.445 Fail to reject the null 
Western Dakota Counties 
Maize 0.10 780 78 79 0.323 Fail to reject the null 
Spring Wheat 0.18 780 140.4 79 0.0003 Reject the null 
Alfalfa 0.03 780 23.4 79 1.000 Fail to reject the null 
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Table S24. Block-bootstrapped yield-weather estimation with standard errors in parentheses	

a p<0.01, b p<0.05, c p<0.1 
 

 

 Maize Soybeans Spring Wheat Alfalfa 
Variable     

Intercept 23.044a 

(2.902) 
23.955a 
(1.496) 

25.699a 
(0.989) 

24.826a 
(2.717) 

t 0.731a 
(0.083) 

0.194a 
(0.045) 

0.659a 
(0.029) 

-0.104 
(0.072) 

t65 1.166a 
(0.133) 

0.423a 
(0.071) 

-0.237a 

(0.047) 
1.468a 
(0.126) 

t80 -1.051a 
(0.118) 

-0.300a 

(0.056) 
-0.332a 
(0.042) 

-1.247a 
(0.127) 

t95 1.653a 
(0.106) 

0.293a 
(0.046) 

0.768a 
(0.039) 

0.459a 
(0.106) 

GD 0.005a 
(0.001) 

0.003a 
(0.0004) 

0.003a 
(0.0005) 

0.004a 
(0.001) 

t x GD 0.0003a 
(0.00004) 

0.00002b 
(0.00001) 

0.00008a 
(0.00002) 

0.0002a 
(0.00005) 

SD -0.152a 
(0.013) 

-0.065a 
(0.014) 

-0.058a 
(0.004) 

-0.101a 
(0.010) 

t x SD -0.006a 
(0.0005) 

-0.0009a 
(0.0004) 

 

0.0006a 
(0.0001) 

-0.0001 
(0.003) 

DRYZ -3.683a 
(0.178) 

-1.384a 
(0.092) 

-2.005a 
(0.062) 

-5.174a 
(0.172) 

t x DRYZ -0.120a 
(0.010) 

-0.010b 
(0.006) 

-0.034a 
(0.004) 

-0.078a 
(0.010) 

DRYZ x SD 0.025a 
(0.003) 

0.009a 
(0.003) 

0.005a 
(0.0008) 

0.016a 
(0.002) 

WETZ -0.225b 
(0.128) 

-0.032 
(0.067) 

-0.283a 
(0.044) 

1.974a 
(0.113) 

t x WETZ -0.048a 
(0.006) 

-0.010a 
(0.003) 

-0.016a 
(0.002) 

-0.016a 
(0.005) 

WETZ x SD 0.022a 
(0.044) 

0.022a 
(0.006) 

-0.0002 
(0.001) 

0.011a 
(0.003) 

dry
iQ  x SD 0.0002 

(0.002) 
0.001 

(0.001) 
0.0003 

(0.0004) 
-0.0003 
(0.001) 

dry
iQ  x DRYZ -0.048b 

(0.023) 
0.010 

(0.010) 
-0.011 
(0.008) 

-0.075a 
(0.027) 

wet
iQ  x WETZ -0.014 

(0.013) 
-0.010a 
(0.005) 

-0.033a 
(0.005) 

-0.026a 
(0.013) 

County F.E. Yes Yes Yes Yes 
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Table S25. Block bootstrapped IV regressions for government payments with standard errors in 
parentheses. 
	

 Crop Insurance Subsidy Disaster 
Payments 

Farm 
Subsidies  Maize Soybeans Wheat 

Intercept 5.72a 

(0.490) 
-18.33a 
(1.819) 

11.426a 
(0.279) 

7.954a 

(3.497) 
15.229a 
(0.205) 

Trends    -0.049 
(0.075) 

 

Maize Price 0.76a 
(0.025) 

    

Soy Price  0.343a 
(0.042) 

   

Wheat Price   0.358a 
(0.011) 

  

Average Price    -0.039 
(0.190) 

-0.215a 
(0.010) 

GD -0.0005c 
(0.0003) 

-0.001 
(0.0009) 

0.0001 
(0.0003) 

-0.006a 

(0.002) 
 

SD 0.015a 
(0.006) 

0.096a 

(0.039) 
-0.001 
(0.003) 

0.079b 
(0.041) 

 

DRYZ -0.173 
(0.133) 

-1.926a 

(0.534) 
0.138b 
(0.080) 

2.967a 
(0.911)  

WETZ 0.597a 
(0.072) 

0.618b 
(0.354) 

0.108a 
(0.054) 

1.160b 
(0.698)  

County F.E. Yes Yes Yes Yes Yes 
a p<0.01, b p<0.05, c p<0.10 

Notes:  

1. The coefficients of SD and DRYZ for soybean subsidy (blue color) have the same sign as 
compared to when using the actual data (Table S21) but are statistically significant now.  

2. The sign and statistical significance of the intercept and the time-trends coefficients in the 
disaster payments model (red color), have reversed when compared to those using actual 
data (Table S21). 
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Table S26. Block bootstrap estimates of the marginal effects of the change in exogenous 
variables on land use shares for the eastern portion of the Dakotas including soybean shares. 
Standard errors are reported in parentheses. 

a p<0.01, b p<0.05, c p<0.10 

Notes: The coefficient estimates in red color are statistically insignificant under block bootstrap 
estimation while they were significant when using the actual data. On the other hand, the 
coefficient estimates in blue color are statistically significant coefficients under block bootstrap 
estimation while they were insignificant when using the actual data (see Table 4 in the main 
text). 

  

 Maize Soybeans Spring Wheat Alfalfa Grass 
 Estimate Estimate Estimate Estimate Estimate 
cπ  0.00009 

(0.0006) 
0.00013 

(0.00009) 
-0.00008 
(0.00005) 

-0.00004 
(0.00002) 

-0.0001 

(0.0001) 
sπ  0.0002 

(0.0002) 
-0.002a 

(0.0002) 
-0.002a 

(0.0001) 
0.0003a 

(0.00007) 
0.003a 

(0.0003) 
wπ  -0.0004a 

(0.0001) 
0.0012a 
(0.0002) 

0.0014a 
(0.0001) 

-0.0004a 
(0.00006) 

-0.0015a 

(0.0003) 
aπ  0.0007a 

(0.0001) 
0.0009a 
(0.0002) 

0.0003b 
(0.0001) 

-0.0001 
(0.00006) 

-0.0015a 
(0.0003) 

cowπ  0.0004b 
(0.0003) 

0.0014a 
(0.0004) 

0.001a 
(0.0003) 

-0.001a 
(0.0001) 

-0.001b 
(0.0006) 

fallowπ  0.0013b 

(0.0005) 
-0.0006 
(0.0008) 

0.0005 
(0.0005) 

0.001a 

(0.0002) 
-0.002b 
(0.001) 

CRPπ  -0.0013b 
(0.0007) 

0.0010 
(0.0011) 

-0.0003 
(0.0007) 

0.0006b 

(0.0003) 
-0.0001 
(0.001) 

.
c
ins subsidyG   0.085a 

(0.005) 
0.018b 

(0.008) 
-0.026a 

(0.0004) 
-0.003 
(0.002) 

-0.063a 
(0.010) 

.
s
ins subsidyG   -0.007 

(0.007) 
0.068a 
(0.010) 

0.014b 

(0.007) 
0.007a 

(0.003) 
-0.072a 
(0.015) 

.
w
ins subsidyG  -0.051a 

(0.004) 
-0.046a 
(0.006) 

0.041a 
(0.004) 

-0.008a 
(0.002) 

0.056a 
(0.008) 

-dis payG  -0.004b 
(0.002) 

-0.007b 

(0.003) 
-0.005a 

(0.002) 
0.003a 

(0.0008) 
0.012a 
(0.004) 

 farm subsidyG  -0.034a 
(0.005) 

-0.038a 
(0.007) 

-0.015a 
(0.004) 

-0.005b 

(0.001) 
0.081a 
(0.009) 

% 2LCCQ ≤  0.194 a 
(0.034) 

0.304a 
(0.048) 

0.007 
(0.029) 

-0.026a 
(0.013) 

-0.416a 

(0.066) 
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Table S27. Block bootstrap estimates of the marginal effects of the change in exogenous 
variables on land use shares for the western portion of the Dakotas excluding soybean shares. 
Standard errors are reported in parentheses.	

 Maize Spring Wheat Alfalfa Grass 
Variable Estimate Estimate Estimate Estimate 
cπ  0.00006a 

(0.00001) 
-0.0002a 

(0.00007) 
-0.00005 
(0.00004) 

0.0002a 
(0.00007) 

wπ  -0.00005a 
(0.00002) 

-0.0003b 
(0.0001) 

0.00001 
(0.00005) 

0.0003a 
(0.0001) 

aπ  0.00007 
(0.00003) 

0.0005a 
(0.0002) 

-0.000002 
(0.00008) 

-0.0005a 
(0.0002) 

cowπ  0.0002a 
(0.00004) 

0.002a 
(0.0002) 

-0.0005b 
(0.0001) 

-0.0012a 
(0.0002) 

fallowπ  0.0003a 
(0.00007) 

0.003a 
(0.0004) 

0.0014a 
(0.0002) 

-0.004a 
(0.0004) 

CRPπ  -0.0005a 
(0.0001) 

-0.003a 

(0.0006) 
-0.0004 
(0.0003) 

0.004a 
(0.0006) 

.
c
ins subsidyG  0.014a 

(0.0004) 
-0.0009 
(0.002) 

0.007a 
(0.001) 

-0.018a 
(0.002) 

.
w
ins subsidyG  -0.001 

(0.0009) 
0.065a 

(0.005) 
-0.002 

(0.002) 
-0.06a 

(0.005) 

-dis payG  -0.0007a 
(0.0002) 

-0.001 
(0.001) 

0.002a 
(0.0005) 

0.0002 
(0.001) 

 farm subsidyG  -0.015a 
(0.0007) 

-0.053a 
(0.004) 

-0.009a 
(0.002) 

0.065a 
(0.004) 

% 2LCCQ ≤  0.037b 
(0.003) 

0.321a 
(0.023) 

0.001 
(0.011) 

-0.320a 
(0.023) 

a p<0.01, b p<0.05, c p<0.10 

Notes: The coefficient estimates in red color are statistically insignificant under block bootstrap 
estimation while they were significant when using the actual data. On the other hand, the 
coefficient estimates in blue color are statistically significant coefficients under block bootstrap 
estimation while they were insignificant when using the actual data (see Table 5 in the main 
text). 
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